skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Deshpande, Abhishek"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. ABSTRACT Mathematical models of reaction networks are ubiquitous in applications, especially in chemistry, biochemistry, chemical engineering, ecology, and population dynamics. Under the standard assumption ofmass‐action kinetics, reaction networks give rise to general dynamical systems with polynomial right‐hand side. These depend on many parameters that are difficult to estimate and can give rise to complex dynamics, including multistability, oscillations, and chaos. On the other hand, a special class of reaction systems calledcomplex‐balanced systemsare known to exhibit remarkably stable dynamics; in particular, they have unique positive fixed points and no oscillations or chaotic dynamics. One difficulty, when trying to take advantage of the remarkable properties of complex‐balanced systems, is that the set of parameters where a network satisfies complex balance may have positive codimension and therefore zero measure. To remedy this we are studyingdisguised complex balanced systems(also known asdisguised toric systems), which may fail to be complex balanced with respect to an original reaction network , but are actually complex balanced with respect to some other network , and therefore enjoy all the stability properties of complex‐balanced systems. This notion is especially useful when the set of parameter values for which the network gives rise to disguised toric systems (i.e., thedisguised toric locusof ) has codimension zero. Our primary focus is to compute the exact dimension (and therefore the codimension) of this locus. We illustrate the use of our results by applying them to Thomas‐type and circadian clock models. 
    more » « less
  2. The structure of invariant regions and globally attracting regions is fundamental to understanding the dynamical properties of reaction network models. We describe an explicit construction of the minimal invariant regions and minimal globally attracting regions for dynamical systems consisting of two reversible reactions, where the rate constants are allowed to vary in time within a bounded interval. 
    more » « less